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1 Some Basic Convex Geometry

We have already seen some of the power of understanding the structure of the extreme point
solutions of linear programs. However, our understanding has for the most part been fairly coarse:
either we assume no structure at all, or we prove that the extreme points are integral.

A natural question is whether there is anything in-between. So far, we have seen just one
example of this when we proved on the first homework that the vertex cover LP is half-integral. It
turns out that although half-integrality is rare, extreme points often have robust structure (other
than integrality) which can lead to powerful algorithms. Before we dive into these ideas, we will
review some basic convex geometry.

Figure 1: Two supporting hyperplanes. The solid hyperplane intersected with P is a vertex, and
the dashed hyperplane intersected with P is an edge.

Hyperplanes, Faces, Vertices, and Edges

Definition 1.1 (Supporting Hyperplane). A hyperplane H = {x ∈ Rn | aTx = b} is called a
supporting hyperplane of a polyhedron P ⊆ Rn if P ∩ H 6= ∅ and P is fully contained on one side
of H, i.e. either P ⊆ H≤ = {x ∈ Rn | aTx ≤ b} or P ⊆ H≥ = {x ∈ Rn | aTx ≥ b}.

Definition 1.2 (Face, Vertex, and Edge). A face of a polyhedron is P itself or the intersection of
P with any supporting hyperplane. A vertex of P is a 0-dimensional face of P, and an edge is a
1-dimensional face.

See Fig. 1 for a simple 2-dimensional example. Also, note that a face of a polyhedron is a
polyhedron.

Let’s also recall the definition of extreme point we have used up until this point:

Definition 1.3 (Extreme Point). Let P ⊆ Rn be a polyhedron. Then x ∈ P is an extreme point if there
is no non-zero direction d ∈ Rn such that x + d ∈ P and x− d ∈ P.

We have previously mentioned that this is equivalent to the definition of a vertex. Let’s prove
it.
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Lemma 1.4. Let P = {x ∈ Rn | Ax ≥ b} be a polyhedron for A ∈ Rm×n and b ∈ Rm. Then, the
following are equivalent given a point y ∈ P:

1. y is a vertex of P.

2. y is an extreme point of P.

3. There is a subsystem Ã, b̃ of n linearly independent constraints defining P such that y is the unique
solution to Ãx = b̃.

Proof. Suppose y is a vertex. Then, there is a supporting hyperplane H = {x ∈ Rn | aTx = b}
such that H ∩ P = {y}. Now, suppose y + d ∈ P and y− d ∈ P for some direction d 6= 0. Since
y, y− d and y + d are all on the same side of H and y ∈ H, we must have aTd = 0. But then
y + d ∈ H ∩ P, contradiction. So, (1) implies (2).

Suppose (3) does not hold, and we will show (2) does not hold. Consider the set of tight
constraints at y, and consider any maximal linearly independent family of these Ã, b̃. There must
be fewer than n, as otherwise y would be the unique solution to this subsystem. But then, Ãx = b̃
has a nontrivial kernel, i.e. there exists d ∈ Rn such that Ãd = 0. This implies that for some ε > 0
we have y + εd, y− εd ∈ P since both points satisfy all tight constraints at y and by taking ε small
enough we do not violate any of the constraints that were not already tight. So, (2) implies (3).

Finally, suppose y is the unique solution to Ãx = b̃ for a subsystem of n linearly independent
tight constraints. Setting c = ÃT1, for any x ∈ P we have that cTx = 1T Ãx ≥ 1T b̃. This is an
equality if and only if Ãx = b̃. So cTx = 1T b̃ is a supporting hyperplane H with H ∩ P = {y}.
Therefore, (3) implies (1).

Notice that the lemma is false if we do not require y ∈ P. While (1) and (2) are equivalent here
(as they imply y ∈ P) (3) is not, because (3) can hold for points outside of P. For example, if we
have an LP with constraints 0 ≤ xi ≤ 1 for all 1 ≤ i ≤ n, then a set of n linearly independent
constraints is 0 ≤ xi for all i, and (3) would simply be all zeros, which is not in P for any problem
we have discussed in this class. Another thing to keep in mind is that not every polyhedron has
vertices (although we will never think about polyhedra without them in this course), for example
just take one half-plane in R2.

Combined with other facts we have discussed in this course (and not necessarily proved, as
our focus is elsewhere), we obtain the following:

Finding a Vertex in Polynomial Time

For any linear program over n variables with constraints 0 ≤ xi ≤ 1 for all i and a
polynomial time separation oracle, we can find an optimal solution y in polynomial time
that is also the unique solution to a subsystem of n linearly independent constraints met
with equality, Ãx = b̃.

Note this can also easily be generalized to situations where we do not have lower or upper
bounds on the variables. Also, it’s easy to see that this implies that the number of fractional
coordinates at a vertex is at most rank(Ã) ≤ rank(A) where Ã is the subset of tight constraints of
A, the non-trivial constraints (where a constraint is trivial if it is of the form 0 ≤ xi or xi ≤ 1).
This is sometimes known as the rank lemma.
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2 Minimizing the Makespan on Unrelated Parallel Machines

The rank lemma shows that when there are few non-trivial constraints (or the subset of tight
ones at any point can be shown to have a simple, low-rank structure), few variables take non-integer
values. We will use this to give a 2-approximation to the problem of minimizing the makespan on
unrelated parallel machines, work of Lenstra, Shmoys, and Tardos [LST90].

As input, we are given n machines and m jobs. Each machine i takes time pij to process job j.
We now want to process all jobs in the minimum amount of time T. This is called minimizing the
makespan. Notice that we cannot split a job up between different machines.

Let’s design an LP. Here’s a first guess, where xij is the relaxed indicator variable of whether
machine i process job j:

min T

s.t.
n

∑
i=1

xij = 1 ∀1 ≤ j ≤ m

m

∑
j=1

pijxij ≤ T ∀1 ≤ i ≤ n

0 ≤ xij ≤ 1 ∀1 ≤ i ≤ n, 1 ≤ j ≤ m

The first constraint says every job should be processed once. The second constraint says no
machine should run for more than T steps, the objective function.

Unfortunately, this LP has an integrality gap of n. If our input is a single job, and all machines
have pij = 1, we can split up the job n ways to obtain T = 1/n. But clearly the optimal T is 1. To
fix this, we ensure that no single job is larger than T, to obtain the following feasibility problem:

PT
UPM =


∑n

i=1 xij = 1 ∀1 ≤ j ≤ m

∑m
j=1 pijxij ≤ T ∀1 ≤ i ≤ n

xij = 0 ∀i, j | pij ≥ T
0 ≤ xij ≤ 1 ∀1 ≤ i ≤ n, 1 ≤ j ≤ m

Of course, we don’t know T off the bat. So, we will run binary search to find the smallest T,
T∗, for which PT

UPM is non-empty.
It turns out that this new LP has an integrality gap of 2, and leads to a 2-approximation. Let’s

prove it using sparsity. First, let’s obtain a vertex x of PT∗
UPM for our optimal T∗. The following is

our main sparsity fact, which is a consequence of the fact that there are far more variables than
"nontrivial" constraints. It says that most variables must be set to 0 or 1!

Fact 2.1. Any vertex x ∈ PT
UPM has at most n + m variables for which 0 < xij < 1.

Proof. We have nm variables, so by Lemma 1.4 (or the Rank Lemma), there exists a collection of
nm constraints met with equality uniquely defining x. There are n + m constraints that are not of
the form xij = 0 or xij = 1. Therefore, nm− n−m constraints must be setting variables to 0 or 1,
giving the claim.

Now consider a bipartite graph G with lefthand side [n], the machines, and righthand side [m],
the jobs. Create an edge between machine i and job j for every 0 < xij < 1. We may assume that
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the graph is a single connected component, as otherwise our LP splits into two disjoint instances
that we can solve separately.1 But now, we have n + m vertices, at most n + m edges, and the
graph is connected. In other words:

Fact 2.2. Any connected component of G is a tree plus at most one edge.

All jobs have degree at least 2. So, all leaves are machines. We will now assign jobs to machines
so that every machine gets at most one additional job. This would prove that we have a makespan
of 2T∗, since every machine so far has only been assigned jobs with xij = 1 and every edge that
exists has pij ≤ T∗.

Iteratively find a machine that is a leaf, and assign it the unique job it’s adjacent to. Then
delete the machine and the assigned job. In this way, we can never create a leaf which is a job, as
jobs either are deleted or their degree does not change via this process. Ultimately, we are left
with no leaves, and we have some n′ + m′ vertices and at most n′ + m′ edges since we always
delete two vertices and at least two edges. The only possibility is that there are no vertices left (in
which case we are done) or the graph is a cycle, and the length of that cycle is even since G is
bipartite. Find a perfect matching in this cycle to assign every job to one machine (and vice versa).
This demonstrates that our makespan is at most 2T∗.

Unfortunately, this LP cannot do better than 2.

Fact 2.3. The analysis of this algorithm cannot be improved. (The "feasibility gap" of this collection of LPs
is 2.)

Proof. Create one "personal" job i for each machine i, assigning pii = n− 1 for each such job and
pi′i = 100n for all other machines i′.

Finally, create one "big" job b with pib = n on all machines i. In this way there are n + 1 jobs.
A feasible LP solution for T∗ = n is to assign all n− 1 personal jobs to their machines, and then
split the final job b up with xbj = 1/n for all machines j. In this way the LP has makespan n.

However, clearly OPT is 2n− 1, since every personal job must be assigned to that machine to
have makespan below 100n, and the big job must go somewhere.

A major open question is whether a better-than-2 approximation can be designed for this
problem.
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1By restricting the LP to each connected component we can show each component forms an extreme point solution
to the resulting restricted problem.
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